本实验室以发展激光原位分析技术在矿床学及矿床地球化学方面的应用为主要目的,重点开展单矿物U-Pb定年、单个流体包裹体成分分析、硅酸盐、碳酸盐、氧化物和硫化物等矿物主、微量元素分析和Sr-Nd-Pb-Hf-S等同位素分析,同时也开展U/Th-He低温年代学分析,主要解决以下问题:1)精确限定成岩、成矿年龄;2)精细示踪成矿物质来源及成矿流体演化过程;3)深入揭示成矿机理,特别是成矿元素的搬运沉淀机制。实验室目前可开展的测试项目有:
(1)U-Pb定年和微量元素分析:
1)锆石、斜锆石U-Pb定年和微量元素分析;
2)锡石、黑钨矿、白钨矿、赤铁矿U-Pb定年和微量元素分析;
3)榍石、金红石、磷灰石、石榴石、符山石、独居石、方解石U-Pb定年和微量元素分析;
4)磁铁矿、铬铁矿微量元素分析;
5)单个流体包裹体成分分析;
6)硅酸盐矿物(长石、石榴石、橄榄石和辉石等)、石英和萤石微量元素分析;
7)碳酸盐矿物(方解石、白云石)微量元素分析;
8)硫化物微量元素分析;
9)面扫描技术(定性、半定量),特别是硫化物mapping;
(2)同位素分析:
1)锆石Hf同位素;
2)硫化物S-Pb同位素;
3)锆石Hf同位素碳酸盐-磷酸盐矿物Sr-Nr同位素;
4)电气石锂、硼同位素。
1. 科研人员 |
||
高剑峰,博士,研究员。主要从事岩浆有关矿床精细成矿作用和微区分析技术研究,负责激光微区分析实验室方法开发和应用。 办公室:矿床室419室 Email:gaojianfeng@mail.gyig.ac.cn http://sklodg.gyig.cas.cn/ryzc/zyyjry/201608/t20160829_4656078.html |
||
蓝廷广,博士,研究员。主要从事岩浆-热液成矿作用和微区原位分析技术研究,负责LA-ICP-MS分析方法的开发和应用研究,特别是单个流体包裹体分析方法及其在矿床学中的应用。 办公室:矿床室315室 Email:lantingguang@mail.gyig.ac.cn http://sklodg.gyig.cas.cn/ryzc/zyyjry/201406/t20140619_4140258.html |
||
2. 技术人员 |
||
戴智慧,博士,高级工程师。主要负责LA-ICP-MS技术测试方法的开发和仪器的维护。 |
||
唐燕文,博士,高级工程师。主要从事矿床学及矿床地球化学LA-(HR-)ICP-MS技术开发及应用研究,特别是包裹体分析技术及应用。 Email:tangyanwen@mail.gyig.ac.cn http://sklodg.gyig.cas.cn/ryzc/zyyjry/201807/t20180725_5050289.html |
||
韩俊杰,学士,助理工程师。 职责:协助完成相干-飞秒激光剥蚀系统、安捷伦7900和高分辨质谱的维护及实验安排 |
||
陈丹,学士,助理工程师。 职责:协助完成RESOlution S-155型193nm-NWR213激光剥蚀系统、安捷伦质谱7700和多接收质谱的维护及相关实验安排 |
||
样品前处理和实验准备等资料加QQ群315162792下载查看,申请单和分析方法见下方附件、测试方法和依据见下方罗列的文献。 (单个流体包裹体成分分析,请务必加群查阅实验注意和样品准备事项) |
实验室现配备有相干Geolas Pro 193nm准分子激光剥蚀系统两套,RESOlution S-155型193nm准分子激光剥蚀系统和RESOchron SE系统各一套,New Wave NWR飞秒激光剥蚀系统(257/206nm波长)一套、New Wave NWR 213nm激光剥蚀系统一套、 Nu Plasma III型MC-ICP-MS一台,Thermo Element XR型HR-ICP-MS一台,Agilent 7700X型ICP-MS一台,7900型ICP-MS两台。实验室同时还装备了样品前处理系统,半自动精密研抛机1台(用于适合不同尺寸的树脂靶和包裹体片,无极变速,平面磨抛平整)和连续放大双目镜2台(用于制靶和观察)、电子天平1台。同时实验室购置有1035A/B透明环氧树脂和固化剂(固化速度快,常温固化,透明度高硬度好,耐酸碱),用以快速制靶。
1. GeolasPro 193nm+Newave213 nm+RESOlution S-155型193nm激光系统+Nu Plasma III+Element XR +Agilent 7700X质谱仪
仪器位于矿床室115室,主要用于单矿物S-Sr-Nd-Pb-Hf同位素分析、硫化物、氧化物主微量原位分析(含mapping)、单个流体包裹体元素分析和低U单矿物U-Pb定年等。
115实验室布局(左:高分辨/Agilen7700x+相干激光系统,右:多接收+瑞索激光器)
GeoLasPro激光剥蚀系统:2015年引进,同年5月安装完毕。技术规格:工作波长:193nm;光斑大小:4-160mm;不均匀度:< ±3.5%(2 sigma);最大能量密度:光斑大小为130-160 μm时可达 35 J/cm2;能量密度范围:< 1 J/cm2-45 J/cm2;激光器安全等级:IIIb。使用预混气,激光束斑切换手动版。
RESOlution S-155激光系统:由澳大利亚瑞索公司(RESOlution)生产的193nm准分子气体激光,于2018年6月安装完成。束斑大小为4-150um,最大重复率为20HZ,最大能量密度为30J/cm2;Laurin公司的大剥蚀双池技术,最多能同时放入24个1英寸标准靶,同时具有很短的样品冲洗时间,非常适合地质样品点、线和面分析。
NWR 213 nm激光剥蚀系统:该系统是Nd:YAG深紫外激光剥蚀系统,具有深紫外激光的波长优势和固体激光系统简单易用的优点,于2016年1月份引进实验室。技术规格:工作波长:213nm,光斑大小:4-160μm;脉冲宽度:<4ns。
Agilent 7700x质谱仪:安捷伦(Agilent)公司生产的7700x型等离子质谱仪为2012年购置。耐高盐、易清洗。技术参数:检测限低至ppb,同位素比精度RSD<0.1%,灵敏度低质量数 Li(7)=50 Mcps/ppm,中质量数 Y(89)=160 Mcps/ppm,高质量数Tl(205)=80Mcps/ppm。
Nu Plasma III型MC-ICP-MS:由英国Nu公司生产的2016年推出的第三代多接收ICP质谱仪,于2018年7月安装完成。仪器利用具专利的分散变焦镜头,与由16个法拉第接收器以及4个离子计数量组成的检测器阵列结合,可进行从锂到锕系元素的同位素同时精确检测。仪器与激光剥蚀系统联用时,可进行单矿物原位微区Pb、Fe、Mg、Li、S、Cu、Hf、Sr等同位素的测定,还可以用溶液法测定地质样品中Sr、Nd、Pb、Cu、Fe、Zn等同位素组成。
Element XR型HR-ICP-MS:由德国Thermo Scientific生产的高分辨双聚焦磁场电感耦合等体质谱仪(HR-SF-ICP-MS)于2018年8月安装完成。仪器除了具有高灵敏度和高稳定性外,还具有极宽的线性范围,其线性范围高达12个数量级,且不同模式自动切换校正,能精确获得地质样品中的主量和微量元素信息。此外,仪器还提供固定宽度的低、中、高分辨率狭缝,可利用中、高分辨率直接准确获得有干扰的元素含量和同位素比值。
2. GeolasPro 193nm激光剥蚀系统+ Agilent 7900质谱仪
216实验室布局(左:瑞索激光+Agilent7900;右:飞秒激光剥蚀系统/相干激光剥蚀系统+ Agilent7900)
仪器位于矿床室216室,主要用于相对高U单矿物的U-Pb定年+微量检测,硅酸盐-碳酸盐-磷酸盐-氧化物矿物主微量元素分析,石英-萤石等矿物的微量元素单点、mapping以及其中单个流体包裹体分析。
GeoasPro 193nm激光剥蚀系统:GeoLasPro激光剥蚀系统为德国Coherent公司制造,2009年引进,同年9月安装完毕。技术规格,工作波长:193nm;束斑大小:4-160μm;不均匀度:<± 3.5% (2 sigma);最大能量密度:光斑大小为130-160μm时可达35J/cm2;能量密度范围:<1 J/cm2-45J/cm2;激光器安全等级:IIIb。
Agilent 7900质谱仪:安捷伦公司生产,2015年购置,同年5月安装完毕。其具有体积小型化、软件智能化、超高灵敏度、长期工作可靠性高、操作方便等特点,特别是操作系统可实现中英文相互切换。
四、收费标准
欢迎各位科技人员来本实验室开发新方法、新技术,时间方面优先安排,收费方面给予优惠
1. 中科院系统师生请前往中科院仪器共享平台,填写实验预约申请,经审核通过,填写分析测试申请表(见附件);其他科研院校人员可先填写分析测试申请表预约实验,并委托实验技术人员代为填写网上预约。在填写“分析测试申请表”时,请参考本网页公布的收费标准,重点填写预计分析费等内容,并有导师确认签字。
2. 通过电子邮件发送申请表扫描件到各负责人对应的邮箱,联系实验室技术人员安排实验,开展实验当天请提交纸质版申请表。
为便于实验人员了解分析流程,一些重要参考文献及本实验室的科研成果罗列如下:
1. 单个流体包裹体
蓝廷广, 胡瑞忠, 范宏瑞, 毕献武, 唐燕文, 周丽, 毛伟, 陈应华. 2017. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用. 岩石学报,33(10): 3239-3262 (本实验室).
Lan T G, Hu R Z, Bi X W, Mao G J, Wen B J, Liu L, Chen Y H. 2018. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: a case study of the ~128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, 160: 460-489 (本实验室).
Mu L, Hu RZ, Bi XW, Tang YY, Lan TG, Lan Q, Zhu JJ, Peng JT, Oyebamiji A. 2021. New Insights into the Origin of the World-class Jinding Sediment-Hosted Zn-Pb Deposit, Southwestern China: Evidence from LA-ICP-MS Analysis of Individual Fluid Inclusions. Economic Geology, 116 : 883–907(本实验室).
Zhao XY, Zhong H, Hu RZ, Mao W, Bai ZJ, Lan TG, Xue K. 2021. Evolution of Multistage Hydrothermal Fluids in the Luoboling Porphyry Cu-Mo Deposit, Zijinshan Ore Field, Fujian Province, China: Insights from LA-ICP-MS Analyses of Fluid Inclusions. Economic Geology, 116: 581–606(本实验室).
Wang H, Lan TG*, Fan HR, Huan ZL, Hu HL, Chen YH, Tang YW, Li J. 2022. Fluid origin and critical ore-forming processes for the giant gold mineralization in the Jiaodong Peninsula, China: Constraints from in situ elemental and oxygen isotopic compositions of quartz and LA–ICP–MS analysis of fluid inclusions. Chemical Geology, 608: 121027(本实验室).
2. 石英微量
蓝廷广, 胡瑞忠, 范宏瑞, 毕献武, 唐燕文, 周丽, 毛伟, 陈应华. 2017. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用. 岩石学报, 33(10): 3239-3262 (本实验室).
Lan T G, Hu R Z, Bi X W, Mao G J, Wen B J, Liu L, Chen Y H. 2018. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: a case study of the ~128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, 160: 460-489 (本实验室).
Audétat A, Garbe-Sch?nberg D, Kronz A, et al. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171-184.
Wang H, Lan TG*, Fan HR, Huan ZL, Hu HL, Chen YH, Tang YW, Li J. 2022. Fluid origin and critical ore-forming processes for the giant gold mineralization in the Jiaodong Peninsula, China: Constraints from in situ elemental and oxygen isotopic compositions of quartz and LA–ICP–MS analysis of fluid inclusions. Chemical Geology, 608: 121027(本实验室).
3. 锆石U-Pb定年
Tang Y W, Cui K, Zheng, Z, Gao, J F, Han, J J, Yang, J H, Liu, L, 2020. LA-ICP-MS U-Pb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China. Gondwana Research, 83, 217-231 (本实验室).
Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao CG, Chen H H, 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43.
Ludwig K R. 2003. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, No. 4, pp. 25-32.
4. 锡石、黑钨矿、白钨矿U-Pb定年
Tang Y W, Cui K, Zheng, Z, Gao, J F, Han, J J, Yang, J H, Liu, L, 2020. LA-ICP-MS U-Pb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China. Gondwana Research, 83, 217-231 (本实验室).
Tang Y W, Han, J J, Lan T G, Gao, J F, Liu, L, Xiao C H, Yang, J H, 2022. Two reliable calibration methods for accurate in situ U–Pb dating of scheelite. J. Anal. At. Spectrom., 37, 358-368 (本实验室).
5. 铁氧化物(磁铁矿、钛铁矿)
He H L, Yu S Y, Song X Y, et al. 2016. Origin of nelsonite and Fe–Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite. Ore Geology Reviews, 79: 367-381(本实验室).
She Y W, Song X Y, Yu S Y, et al. 2016. Apatite geochemistry of the Taihe layered intrusion, SW China: Implications for the magmatic differentiation and the origin of apatite-rich Fe-Ti oxide ores. Ore Geology Reviews, 78: 151-165(本实验室).
Huang X W, Gao J F, Qi L, et al. 2016. In-situ LA–ICP–MS trace elements analysis of magnetite: The Fenghuangshan Cu–Fe–Au deposit, Tongling, Eastern China. Ore Geology Reviews, 72: 746-759(本实验室).
Chen W T, Zhou M F, Gao J F, et al. 2015. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Mineralium Deposita, 50(7): 795-809(本实验室).
Huang X W, Gao J F, Qi L, et al. 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re–Os dating of pyrite: The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geology Reviews, 65: 900-916(本实验室).
Huang X W, Zhou M F, Qiu Y Z, et al. 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: the Bayan Obo Fe-REE-Nb deposit, North China. Ore Geology Reviews, 65: 884-899(本实验室).
She Y W, Song X Y, Yu S Y, et al. 2015. Variations of trace element concentration of magnetite and ilmenite from the Taihe layered intrusion, Emeishan large igneous province, SW China: implications for magmatic fractionation and origin of Fe–Ti–V oxide ore deposits. Journal of Asian Earth Sciences, 113: 1117-1131(本实验室).
Zhao W W, Zhou M F, 2015. In-situ LA–ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China. Ore Geology Reviews, 65: 872-883(本实验室).
Gao J F, Zhou M F, Lightfoot P C, Wang C Y, Qi L, Sun M, 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology 108, 1833-1848.
Dare S A S, Barnes S J, Beaudoin G, 2012. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochimica et Cosmochimica Acta, 88: 27-50.
6. 碳酸盐
Jochum K P, Scholz D, Stoll B, et al. 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chemical Geology, 318: 31-44.
Chen L, Liu Y, Hu Z, et al. 2011. Accurate determinations of fifty-four major and trace elements in carbonate by LA–ICP-MS using normalization strategy of bulk components as 100%. Chemical Geology, 284(3): 283-295.
7. 磷酸盐
He H L, Yu S Y, Song X Y, et al. 2016. Origin of nelsonite and Fe–Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite. Ore Geology Reviews, 79: 367-381(本实验室).
She Y W, Song X Y, Yu S Y, et al. 2016. Apatite geochemistry of the Taihe layered intrusion, SW China: Implications for the magmatic differentiation and the origin of apatite-rich Fe-Ti oxide ores. Ore Geology Reviews, 78: 151-165(本实验室).
Chew D M, Babechuk M G, Cogné N, et al. 2016. (LA, Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chemical Geology, 435: 35-48.
Mao M, Rukhlov A S, Rowins S M, et al. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187-1222.
8. 硅酸盐
S?ager N, Portnyagin M, Hoernle K, et al. 2015. Olivine major and trace element compositions in southern Payenia basalts, Argentina: evidence for pyroxenite–peridotite melt mixing in a back-arc setting. Journal of Petrology, 56(8): 1495-1518.
Liu Y, Hu Z, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1): 34-43.
9. 独居石定年
Aleinikoff, J. N., Schenck, W. S., Plank, M. O., et al., 2006. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118(1-2), 39-64 (Monazite of 44069, ~426Ma).
Tomascak, P B, Krogstad, E J and Walker, R J, 1996. U-Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the Northern Appalachians. The Journal of Geology, 104(2), 185-195 (Monazite of Harvard 117531, ~272Ma).
Gon?alves, G O, Lana, C, Scholz, R, et al. 2016. An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite. Chemical Geology, 424, 30-50 (Bananeira, Coqueiro, Paraíso and Itambé monazites).
10. 磷灰石定年
Thompson, J, Meffre, S, Maas, R, et al. 2016. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. Journal of Analytical Atomic Spectrometry, 31(6), 1206-1215.
Chew, D M, Sylvester, P J and Tubrett, M N, 2011. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2), 200-216.
Chew, D M, Petrus, J A and Kamber, B S, 2014. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185-199.
11.石榴石、符山石U-Pb定年
Tang Y W, Gao J F, Lan T G, Cui K, Han J J, Zhang X, Chen Y W, Chen Y H, 2021. In situ low-U garnet U-Pb dating by LA-SF-ICP-MS and its application in constraining the origin of Anji skarn system combined with Ar-Ar dating and Pb isotopes, Ore Geology Reviews, 130,103970(本实验室).
Chen Y H, Hu R Z, Lan T G, Wang H, Tang Y W, Yang Y H, Tian Z D, Ulrich T, 2021. Precise UPb dating of grandite garnets by LA-ICP-MS: Assessing ablation behaviors under matrix-matched and non-matrix-matched conditions and applications to various skarn deposits. Chemical Geology, 572, 120198(本实验室).
Xing L Z, Peng J T*, Lv Y J, Tang Y W, Gao J F, 2022. Vesuvianite: A potential U-Pb geochronometer for skarn mineralization---a case study of tungsten and tin deposits in South China. Chemical Geology, 607, 121017(本实验室).
12.磷钇矿、氟碳铈矿U-Pb定年
Tang Y W, Liu N, Yang J H, Gon?alves G O, Liu L, Lan T G*, Gao J F, Han J J, 2022. A new calibrated strategy for the in situ U–Th–Pb dating of bastnasite by xenotime. Anal. At. Spectrom., 2022, 37, 2599(本实验室).
Vasconcelos A D, Gon?alves G O, Lana C, Buick I S, Kamo S L, Corfu F, et al., 2018. Characterization of xenotime from Datas (Brazil) as a potential reference material for in situ U-Pb geochronology. Geochemistry,Geophysics, Geosystems, 19, 2262–2282.
版权所有:中科院地球化学研究所 矿床地球化学国家重点实验室
电话:0851-5891199 传真:0851-5891664 电子邮件:chenhongwei@mail.gyig.ac.cn
京ICP备05002857号